
Motor Control Blockset™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ Release Notes
© COPYRIGHT 2020–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021b

Induction Motor Parameter Estimation: Determine parameters of AC
induction motor from experiments with motor hardware 1-2

PMSM Parameter Estimation: Estimate PMSM parameters using
quadrature encoder and custom hardware . 1-2

Algorithm-Export Workflows For Custom Hardware: Reference example
. 1-2

Sliding Mode Observer: Improve position tracking and automatically
estimate observer parameters . 1-3

Reference Example Using Field Oriented Control Autotuner Block:
Automatically tune current and speed loops running on hardware . . . 1-3

Field Oriented Control Autotuner Block: Reduce execution time on
hardware by performing frequency response estimation experiment
using sinestream signals . 1-3

Initial Rotor Position Estimation: Reference example 1-4

PWM Reference Generator Block: Use modulation strategies that reduce
switching losses . 1-4

Speed Measurement Block: Support for uint16, uint32, and uint64 data
types . 1-5

R2021a

Flux Observer: Implement sensorless control of induction motors 2-2

IIR Filter: Improve sensorless control performance using high-pass filter
. 2-2

Motor Parameter Estimation: Estimate PMSM parameters without
position sensors using F28069M controller . 2-2

InitFcn Callback For PI Gains: Customize PI gain computation 2-2

iii

Contents

Field Oriented Control Autotuner Block: Reduce target hardware
throughput requirements by running autotuning at slower sample rate
than PID controllers . 2-3

R2020b

Induction Motors: Design and implement field-oriented control
algorithms for three-phase induction machines 3-2

Induction Motors: Model and simulate three-phase induction machines
. 3-2

BLDC Motors: Design and implement trapezoidal control using Six Step
Commutation block . 3-2

Motor Parameter Estimation: Identify PMSM parameters using
quadrature encoder or flux observer . 3-2

Vector Plot Block: Visualize and verify motor control algorithms by
plotting rotating phasors . 3-2

Sensorless Estimators: Compute more accurate rotor flux estimate 3-3

R2020a

Introducing Motor Control Blockset: Design and implement motor
control algorithms . 4-2

Reference Examples: Simulate field-oriented control and generate
compact and fast C code for implementation on microcontroller (by
using Embedded Coder) . 4-2

Sensor Decoders and Sensorless Estimators: Implement sensor-based and
sensorless motor control . 4-2

Controller Autotuning: Automatically tune current and speed loops 4-2

Motor Parameter Estimation: Identify motor parameters from
experiments with motor hardware . 4-2

Motor and Inverter Models: Verify control algorithms using closed-loop
simulation . 4-3

iv Contents

R2021b

Version: 1.3

New Features

Compatibility Considerations

1

Induction Motor Parameter Estimation: Determine parameters of AC
induction motor from experiments with motor hardware
You can now use the Motor Control Blockset parameter estimation tool to determine mechanical and
electrical parameters of a three-phase AC induction motor. Previously, you could use the tool to
estimate parameters for a PMSM only.

Run the host model mcb_acim_param_est_host_read.slx after deploying the target model
mcb_acim_param_est_f28379D_DRV8305.slx to execute pre-built instrumented tests on the
Texas Instruments™ LAUNCHXL-F28379D controller (with BOOSTXL-DRV8305 inverter) and
estimate the following parameters:

• Stator phase resistance (Rs)
• Rotor phase resistance (Rr)
• Magnetizing inductance (Lm)
• Stator leakage inductance (Lls)
• Rotor leakage inductance (Llr)
• Motor inertia (J)
• Friction constant (F)

For details, see “Estimate Induction Motor Parameters Using Recommended Hardware”.

PMSM Parameter Estimation: Estimate PMSM parameters using
quadrature encoder and custom hardware
You can now use the Motor Control Blockset parameter estimation algorithm independent of the
Texas Instruments LAUNCHXL-F28379D and F28069 controllers to develop a tool that runs on
custom motor control hardware and estimates the parameters of a three-phase PMSM connected to a
quadrature encoder.

The parameter estimation algorithm for custom hardware is available as a MATLAB® project. Run the
command mcb_ParameterEstimationAlgorithmStart at the command prompt to open the
MATLAB project. For details, see “Estimate PMSM Parameters Using Custom Hardware”.

Algorithm-Export Workflows For Custom Hardware: Reference
example
A new reference example implements field-oriented control (FOC) for a three-phase PMSM by using a
quadrature encoder sensor and the STMicroelectronics® NUCLEO F302R8 board and X-NUCLEO-
IHM07M1 inverter. You can use this example to:

• Verify your hardware setup by using an open-loop control algorithm.
• Calculate the offset of the analog-to-digital converter (ADC).
• Calculate the offset of the quadrature encoder sensor attached to the PMSM.

This example is available as a MATLAB project. Run the command
mcb_FOCAlgorithmExportDemoStart at the command prompt to open the MATLAB project.

R2021b

1-2

You can also use this project as a reference to develop FOC algorithms for other motor control
hardware. For details, see “Algorithm-Export Workflows for Custom Hardware”.

Sliding Mode Observer: Improve position tracking and automatically
estimate observer parameters
The Sliding Mode Observer block, available in the Sensorless Estimators library, performs improved
tracking of the PMSM rotor position. In addition, you can now estimate observer parameters
automatically. Previously, you could only tune the observer parameters manually.

The previous version of Sliding Mode Observer block, available in the mcbpositiondecoderlib/
Archive library, uses the older computation technique for tracking the PMSM rotor position. This
block does not support automatic estimation of the observer parameters.

Compatibility Considerations
You can use the R2021b version of the Sliding Mode Observer block in R2021b or later releases only.

You can use the previous version of the Sliding Mode Observer block in R2021b or earlier releases
only.

Note The previous version of the Sliding Mode Observer block, available in the
mcbpositiondecoderlib/Archive library, will be removed in a future release. Replace any
previous versions of the Sliding Mode Observer block with the R2021b version.

Reference Example Using Field Oriented Control Autotuner Block:
Automatically tune current and speed loops running on hardware
Use the Field Oriented Control Autotuner block to automatically tune the gains of the speed and
current loop controllers available in the field-oriented control algorithm that you deploy and run on
the Texas Instruments LAUNCHXL-F28379D controller (with BOOSTXL-DRV8305 inverter).

You can simulate the models mcb_pmsm_foc_autotuner_f28379d.slx and
mcb_host_autotuner_f28379d.slx or deploy them to the hardware to compute the PI controller
gains for the speed and current loops based on the motor and inverter parameters. For details, see
“Tune PI Controllers Using Field Oriented Control Autotuner”.

Field Oriented Control Autotuner Block: Reduce execution time on
hardware by performing frequency response estimation experiment
using sinestream signals
The Field Oriented Control Autotuner block tunes PID controllers based on estimated plant frequency
responses for each loop. You can now estimate frequency responses of the plants associated with
each loop using sinestream input signals. A sinestream signal consists of a series of sinusoidal
perturbations applied one after another. When you perform a frequency response estimation
experiment using sinestream input signals, the block applies perturbation at each frequency
separately. For more information, see “Sinestream Input Signals” (Simulink Control Design).

Sinestream signals reduce the execution time compared to superposition input signals, but also take
longer to estimate the frequency response. Frequency response estimation using sinestream signals

1-3

is useful when you have limited processing power and you want to reduce the execution time. To do
so, on the Experiment tab of block parameters, set Experiment Mode to Sinestream.

For more information about deploying the Field Oriented Control Autotuner block, see “Tune PI
Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems”.

Initial Rotor Position Estimation: Reference example
Use a new reference example to determine the initial rotor position of a stationary interior PMSM
that has a high saliency ratio (Lq > Ld). The example uses the pulsating high-frequency method to
inject a high-frequency voltage into the motor and performs numerical analysis of the resulting stator
current signals to compute the initial position of the stationary rotor. In addition, it uses the dual
pulse injection method to determine if the computed position needs pi-compensation.

Simulate the model mcb_ipmsm_initPosEst.slx to compute the initial rotor position of an interior
PMSM with a high saliency ratio. For details, see “Estimate Initial Rotor Position Using Pulsating
High-Frequency and Dual-Pulse Methods”.

PWM Reference Generator Block: Use modulation strategies that
reduce switching losses
The PWM Reference Generator block, which replaces the Space Vector Generator block, enables you
to perform sinusoidal PWM (SPWM) and space vector modulation (SVM) as well as select pulse-width
modulation (PWM) methods that reduce switching losses:

• 60 DPWM — 60 degree discontinuous PWM

R2021b

1-4

• 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM
• 60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM
• 30 DPWM — 30 degree discontinuous PWM
• 120 DPWM — Positive DC component
• 120 DPWM — Negative DC component

This block, available in the Controls/Math Transforms library, also enables you to select either α-
and β-axis voltages or abc phase voltages as the block inputs.

Compatibility Considerations
If you use the PWM Reference Generator block in releases before R2021b, the software treats the
block as a Space Vector Generator block that supports only SVM.

If you use the older version of this block in R2021b or later releases, the software configures the
block to use the Vα and Vβ inputs and SVM by default. You can change the block inputs and the
modulation method.

Speed Measurement Block: Support for uint16, uint32, and uint64
data types
When you use the Speed Measurement block, available in the Sensor Decoders library, you can now
specify the data type for scaling and processing the position signal input. Available data types are
uint16, uint32, and uint64. Select the data type under Position scaling datatype in the block
parameter dialog box.

Compatibility Considerations
If you use the current version of this block in releases before R2021b, the block supports only
uint32.

If you use the older version of this block in R2021b or later releases, the software configures the
block to use uint32 by default. You can change the data type to uint16 or uint64.

1-5

R2021a

Version: 1.2

New Features

Compatibility Considerations

2

Flux Observer: Implement sensorless control of induction motors
The Flux Observer block now works with induction motors.

This block, available under the Sensorless Estimators library, uses α- and β-axis voltages and currents
to compute electrical position, magnetic flux, and electrical torque of either a PMSM or an induction
motor. You can also use this block to implement field-oriented control of a brushless DC motor.

The block now uses an internal high-pass filter to remove noise, which results in a more accurate
output.

Compatibility Considerations
When you use this version of the block with the previous Motor Control Blockset releases, the block
supports only a PMSM.

When you use the older version of this block with the current Motor Control Blockset release,
Simulink® configures the block to work with a PMSM by default. However, you can reconfigure the
block to work with an induction motor.

IIR Filter: Improve sensorless control performance using high-pass
filter
Use the IIR Filter block to implement a discrete infinite impulse response (IIR) high-pass filter.

This block, available under the Signal Management library, can now function as either a low-pass or
high-pass filter. You can select the discrete step size to determine and set a cutoff frequency (Hz) for
the filter.

When you use this version of the block with the previous Motor Control Blockset releases, the block
always runs as a low-pass filter.

When you use the older version of this block with the current Motor Control Blockset release, the
block behaves as a low-pass filter by default, but you can reconfigure it as a high-pass filter.

Motor Parameter Estimation: Estimate PMSM parameters without
position sensors using F28069M controller
In addition to the LAUNCHXL-F28379D controller (with BOOSTXL-DRV8305 inverter), you can now
use the Motor Control Blockset parameter estimation tool with the F28069 controller (with
DRV8312-69M-KIT inverter) to determine PMSM parameters by using the sensorless flux observer.

InitFcn Callback For PI Gains: Customize PI gain computation
The enhanced mcb.internal.SetControllerParameters function (used by the model
initialization script associated with Motor Control Blockset examples) now includes more control
parameters to help you customize computation of proportional integral (PI) controller gains.

R2021a

2-2

Field Oriented Control Autotuner Block: Reduce target hardware
throughput requirements by running autotuning at slower sample
rate than PID controllers
The Field Oriented Control Autotuner block now lets you specify a different sample time for PID gain
tuning. Previously, the block inherited the tuning sample time, for each loop, from the sample time
specified in the Controller sample time parameter for that loop.

When you have a PID controller with a fast sample time and you run the tuning process at the same
rate, some hardware might not complete PID gain calculation in a single time step. Therefore, when
you have limited processing power and you want to tune controllers with fast sample times, enable
the Use different sample time for tuning parameter and specify a sample time for tuning in the
Tuning sample time parameter. For each loop that you tune, after the frequency response
estimation experiment ends, controller tuning occurs at the sample time specified in the Tuning
sample time parameter.

For more information about deploying the Field Oriented Control Autotuner block, see Tune PI
Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems.

2-3

https://www.mathworks.com/help/releases/R2021a/mcb/ref/fieldorientedcontrolautotuner.html
https://www.mathworks.com/help/releases/R2021a/mcb/gs/tune-pi-contollers-using-foc-autotuner-real-time-systems.html
https://www.mathworks.com/help/releases/R2021a/mcb/gs/tune-pi-contollers-using-foc-autotuner-real-time-systems.html

R2020b

Version: 1.1

New Features

Compatibility Considerations

3

Induction Motors: Design and implement field-oriented control
algorithms for three-phase induction machines
Implement field-oriented control (FOC) for AC Induction Motors (ACIM) by using these control
algorithm blocks:

• The ACIM Control Reference block generates the reference currents for a control system.
• The ACIM Feed Forward Control block computes the decoupling terms d and q-axis voltages.
• The ACIM Slip Speed Estimator block estimates the slip speed of AC Induction Motors.
• The ACIM Torque Estimator block estimates torque and power of AC Induction Motors.

These blocks, available under the Controls/Control Reference library, support simulations with
discrete and continuous solvers. They also support optimized code generation for both fixed-point and
floating-point target systems.

Induction Motors: Model and simulate three-phase induction machines
Use the new Induction Motor model to design and validate motor control algorithms for three-phase
induction motors.

This block, available under the Electrical Systems/Motors library, uses the mechanical load (torque or
speed) and balanced three-phase voltage inputs to generate the mechanical (speed) and electrical
(current) feedback.

BLDC Motors: Design and implement trapezoidal control using Six
Step Commutation block
Use the new Six Step Commutation block to run a three-phase permanent magnet brushless DC
(BLDC) motor in a 120-degree conduction mode.

The block, available under the Controls/Control Reference library, supports inputs either from Hall
sensors or from any other position sensor.

The block uses Hall sensors to obtain the rotor position and compute the commutation sequence. It
commutes the inverter switches at every 60 degrees such that the motor delivers maximum torque at
a given position feedback. Use the block to implement a less complex but accurate speed control.

Motor Parameter Estimation: Identify PMSM parameters using
quadrature encoder or flux observer
Determine motor parameters by using the quadrature encoder sensor or sensorless position
algorithms, in addition to the existing Hall sensor based enhanced parameter estimation utility that
runs the prebuilt instrumented tests on a motor. For more information, see Estimate Motor
Parameters by Using Motor Control Blockset Parameter Estimation Tool.

Vector Plot Block: Visualize and verify motor control algorithms by
plotting rotating phasors
Use the new Vector Plot to visualize space vectors corresponding to the different time-varying AC
quantities such as voltages, currents, and flux.

R2020b

3-2

https://www.mathworks.com/help/releases/R2020b/mcb/ref/acimcontrolreference.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/acimfeedforwardcontrol.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/acimslipspeedestimator.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/acimtorqueestimator.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/inductionmotor.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/sixstepcommutation.html
https://www.mathworks.com/help/releases/R2020b/mcb/gs/estimate-motor-parameters.html
https://www.mathworks.com/help/releases/R2020b/mcb/gs/estimate-motor-parameters.html
https://www.mathworks.com/help/releases/R2020b/mcb/ref/vectorplot.html

The block, available under the Signal Management library, enables you to switch between the
stationary and rotating reference frames to provide a graphical representation of the input vectors
and better analyze the dynamics.

In addition to plotting the vectors, the block also traces the position history to represent the dynamics
in both space and time in the same plot.

You can use the block to visualize the space vectors in different reference frames when designing and
implementing the motor control algorithms. The block supports continuous and discrete solvers
(including the fixed-step discrete solver) and floating-point simulation.

Sensorless Estimators: Compute more accurate rotor flux estimate
The Flux Observer block is improved in this release.

The enhanced Flux Observer block now computes a precise value of the rotor flux by eliminating the
leakage flux from the total magnetic flux, and therefore, calculates the rotor position accurately for a
PMSM.

Compatibility Considerations
When you use the older version of this block with the current Motor Control Blockset release,
Simulink configures the block to use the default value for the newly added Stator d-axis inductance
(H) parameter. However, you can change the parameter value.

3-3

https://www.mathworks.com/help/releases/R2020b/mcb/ref/fluxobserver.html

R2020a

Version: 1.0

New Features

4

Introducing Motor Control Blockset: Design and implement motor
control algorithms
Motor Control Blockset provides reference examples and blocks for developing field-oriented control
algorithms for brushless motors. The examples show how to configure a controller model to generate
a compact and fast C code for any target microcontroller (by using Embedded Coder®). You can also
use the reference examples to generate algorithmic C code and driver code for specific motor control
kits.

Reference Examples: Simulate field-oriented control and generate
compact and fast C code for implementation on microcontroller (by
using Embedded Coder)
Reference examples are setup to implement motor control algorithms for several supported motor
control hardware kits.

For more information, see:

• Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset
• Field-Oriented Control of PMSM by Using Hall Sensor
• Field Oriented Control of PMSM by Using Quadrature Encoder
• Dual Motor (Dyno) Control for PMSM
• Use Motor Control Blockset™ to Generate Code for a Custom Target

Sensor Decoders and Sensorless Estimators: Implement sensor-based
and sensorless motor control
Use the decoder blocks for Hall, resolver, and quadrature encoder sensors to calculate the position
feedback. For more information, see Hall Validity, Hall Speed and Position, Quadrature Decoder, and
Resolver Decoder.

Use the sensorless observers to calculate the rotor position. For more information, see Sliding Mode
Observer, Flux Observer, and Sensorless Field-Oriented Control of PMSM Using Sliding Mode
Observer and Flux Observer.

Controller Autotuning: Automatically tune current and speed loops
Automatically compute the initial PI controller gains for the speed and current loops based on the
motor and inverter parameters. Use the Field Oriented Control Autotuner block to tune the speed and
current loop gains of field-oriented controllers to achieve the specified bandwidth and phase margin
for each loop (by using Simulink Control Design™). For more information, see Estimate Control Gains
from Motor Parameters and Design Field-Oriented Control Algorithm.

Motor Parameter Estimation: Identify motor parameters from
experiments with motor hardware
Determine these motor parameters by using the prebuilt instrumented tests and parameter
estimation dashboard:

R2020a

4-2

https://www.mathworks.com/help/releases/R2020a/mcb/gs/run-three-phase-AC-motors-open-loop-control-calibrate-adc-offset.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/foc-pmsm-using-hall-sensor-example.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/foc-pmsm-using-quadrature-encoder.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/dual-motor-dyno-control-for-pmsm.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/use-mcb-generate-code-for-custom-target.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/hallvalidity.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/hallspeedandposition.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/quadraturedecoder.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/resolverdecoder.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/slidingmodeobserver.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/slidingmodeobserver.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/fluxobserver.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/sensorless-foc-pmsm-smo-fo.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/sensorless-foc-pmsm-smo-fo.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/estimate-control-gains-from-motor-parameters.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/estimate-control-gains-from-motor-parameters.html
https://www.mathworks.com/help/releases/R2020a/mcb/ug/design-field-oriented-control-algorithm.html

• Phase resistance (Rs)
• d and q axis inductances (Ld and Lq)
• Back-EMF constant (Ke)
• Motor inertia (J)
• Friction constant (F)

For more information, see Estimate Motor Parameters by Using Motor Control Blockset Parameter
Estimation Tool.

Motor and Inverter Models: Verify control algorithms using closed-
loop simulation
Verify control algorithms in closed-loop simulation with linear surface-mount and interior permanent
magnet synchronous motor (PMSM) models and average-value inverter models.

For more information, see Create a Model with PMSM Block and Use Motor Parameters, Surface
Mount PMSM, Interior PMSM, and Average-Value Inverter.

4-3

https://www.mathworks.com/help/releases/R2020a/mcb/gs/estimate-motor-parameters.html
https://www.mathworks.com/help/releases/R2020a/mcb/gs/estimate-motor-parameters.html
https://www.mathworks.com/help/releases/R2020a/mcb/ug/create-model-pmsm-estimated-parameters.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/surfacemountpmsm.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/surfacemountpmsm.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/interiorpmsm.html
https://www.mathworks.com/help/releases/R2020a/mcb/ref/averagevalueinverter.html

	R2021b
	Induction Motor Parameter Estimation: Determine parameters of AC induction motor from experiments with motor hardware
	PMSM Parameter Estimation: Estimate PMSM parameters using quadrature encoder and custom hardware
	Algorithm-Export Workflows For Custom Hardware: Reference example
	Sliding Mode Observer: Improve position tracking and automatically estimate observer parameters
	Reference Example Using Field Oriented Control Autotuner Block: Automatically tune current and speed loops running on hardware
	Field Oriented Control Autotuner Block: Reduce execution time on hardware by performing frequency response estimation experiment using sinestream signals
	Initial Rotor Position Estimation: Reference example
	PWM Reference Generator Block: Use modulation strategies that reduce switching losses
	Speed Measurement Block: Support for uint16, uint32, and uint64 data types

	R2021a
	Flux Observer: Implement sensorless control of induction motors
	IIR Filter: Improve sensorless control performance using high-pass filter
	Motor Parameter Estimation: Estimate PMSM parameters without position sensors using F28069M controller
	InitFcn Callback For PI Gains: Customize PI gain computation
	Field Oriented Control Autotuner Block: Reduce target hardware throughput requirements by running autotuning at slower sample rate than PID controllers

	R2020b
	Induction Motors: Design and implement field-oriented control algorithms for three-phase induction machines
	Induction Motors: Model and simulate three-phase induction machines
	BLDC Motors: Design and implement trapezoidal control using Six Step Commutation block
	Motor Parameter Estimation: Identify PMSM parameters using quadrature encoder or flux observer
	Vector Plot Block: Visualize and verify motor control algorithms by plotting rotating phasors
	Sensorless Estimators: Compute more accurate rotor flux estimate

	R2020a
	Introducing Motor Control Blockset: Design and implement motor control algorithms
	Reference Examples: Simulate field-oriented control and generate compact and fast C code for implementation on microcontroller (by using Embedded Coder)
	Sensor Decoders and Sensorless Estimators: Implement sensor-based and sensorless motor control
	Controller Autotuning: Automatically tune current and speed loops
	Motor Parameter Estimation: Identify motor parameters from experiments with motor hardware
	Motor and Inverter Models: Verify control algorithms using closed-loop simulation

